What is phonograph

Phonograph

Edison cylinder phonograph ca. 1899

Thomas Edison and his early phonograph

A late 20th-century phonograph console and record

The record player, phonograph or gramophone was the most common device for playing recorded sound from the late 1870s until the late 1980s.

Usage of these terms is not uniform across the English-speaking world (see below). In more modern usage, this device is often called a turntable, record player, or record changer. When used in conjunction with a mixer as part of a DJ set up, they are often called decks.

The famous phonograph was the fourth device for recording and replaying sound. The term phonograph ("sound writer") is derived from the Greek words φωνή (meaning "sound" or "voice" and transliterated as phonē) and γραφή (meaning "writing" and transliterated as graphē). Similar related terms gramophone and graphophone have similar root meanings. The coinage, particularly the use of the -graph root, may have been influenced by the then-existing words phonographic and phonography, which referred to a system of phonetic shorthand; in 1852 The New York Times carried an advertisement for "Professor Webster's phonographic class", and in 1859 the New York State Teachers' Association tabled a motion to "employ a phonographic recorder" to record its meetings.

F. B. Fenby was the original author of the word. An inventor in Worcester, Massachusetts, he was granted a patent in 1863 for an unsuccessful device called the "Electro-Magnetic Phonograph".[1] His concept detailed a system that would record a sequence of keyboard strokes onto paper tape. Although no model or workable device was ever made, it is often seen as a link to the concept of punched paper for player piano rolls (1880s), as well as Herman Hollerith's punch card tabulator (used in the 1890 United States census), a distant precursor of the modern computer[citation needed].

Arguably, any device used to record sound or reproduce recorded sound could be called a type of "phonograph", but in common practice it has come to mean historic technologies of sound recording.

In the late 19th and early 20th century, the alternative term talking machine was sometimes used. This term was more in line with Thomas Edison's early view that his invention was better suited for spoken recordings such as dictation than for musical recordings.

United Kingdom

In British English, gramophone came to refer to any sound reproducing machine using disc records, as disc records were popularized in the UK by the Gramophone Company. The term phonograph is usually restricted to devices playing cylinder records. The term gramophone would generally be taken to refer to a wind-up machine, and from the 1960s onwards the more common term would be record player or turntable as part of a system that also played cassettes and included radio. Such a system would be called a hi-fi or stereo (most systems being stereophonic by the mid-1960s).

United States

In American English, phonograph was the most common generic term for any early sound reproducing machine, until the second half of the 20th century, when it became archaic and record player became the universal term for disc record machines. In contemporary American usage phonograph most usually refers to disc record machines or turntables, the most common type of analogue recording from the 1910s on.

Gramophone was a U.S. brand name, and as such in the same category as Victrola, Zon-O-Phone, Graphophone and Grafonola referring to specific brands of sound reproducing machines. (Similarly, in German, das Grammophon (literally "the Gramophone") was the most common generic term for any sound reproducer using grooved records, hence the brand name Deutsche Grammophon.) Emile Berliner's Gramophone was considered a type of phonograph.

The brand name Gramophone was not used in the USA after 1901, and the word fell out of use there, though it has survived in its nickname form, Grammy, as the title of the Grammy Awards. The Grammy trophy itself is a small rendering of a gramophone, resembling a Victor disc machine with a taper arm.

Modern amplifier equipment still labels the input that accepts the output from a modern magnetic pickup cartridge as the "phono" input (abbreviated from "phonograph").

Australia

In Australian English, record player was the term; turntable was a more technical term; gramophone was restricted to the old mechanical (i.e., wind-up) players; and phonograph was used as in British English.

History

Phonautograph

Dictionary illustration of a phonautograph. The barrel is made of plaster of paris.

The earliest known invention of a phonographic recording device was the phonautograph, invented by Frenchman Édouard-Léon Scott de Martinville and patented on March 25, 1857. It could transcribe sound to a visible medium, but had no means to play back the sound after it was recorded. In 2008, phonautograph recordings were for the first time played back as sound by American audio historians, using computers to decode the transcribed waveforms.[2][3]

Phonograph theory

Charles Cross, a French scientist, produced a theory (April 18, 1877) concerning a phonograph, but he did not manufacture a working model. His theory was submitted to the French Academy of Sciences, and was read to the public in December 1877, by which time Edison had produced a working model. Cros and Edison apparently discovered their theories independently.

First phonograph

Patent drawing for Edison's phonograph, May 18, 1880

Thomas Alva Edison conceived the principle of recording and reproducing sound between May and July 1877 as a byproduct of his efforts to "play back" recorded telegraph messages and to automate speech sounds for transmission by telephone.[4] He announced his invention of the first phonograph, a device for recording and replaying sound, on November 21, 1877 (early reports appear in Scientific American and several newspapers in the beginning of November, and an even earlier announcement of Edison working on a 'talking-machine' can be found in the Chicago Daily Tribune on May 9), and he demonstrated the device for the first time on November 29 (it was patented on February 19, 1878 as US Patent 200,521). "In December, 1877, a young man came into the office of the SCIENTIFIC AMERICAN, and placed before the editors a small, simple machine about which very few preliminary remarks were offered. The visitor without any ceremony whatever turned the crank, and to the astonishment of all present the machine said : " Good morning. How do you do? How do you like the phonograph?" The machine thus spoke for itself, and made known the fact that it was the phonograph..."[5]

Edison's early phonographs recorded onto a tinfoil sheet phonograph cylinder using an up-down ("hill-and-dale") motion of the stylus.[6] The tinfoil sheet was wrapped around a grooved cylinder, and the sound was recorded as indentations into the foil. Edison's early patents show that he also considered the idea that sound could be recorded as a spiral onto a disc, but Edison concentrated his efforts on cylinders, since the groove on the outside of a rotating cylinder provides a constant velocity to the stylus in the groove, which Edison considered more "scientifically correct". Edison's patent specified that the audio recording be embossed, and it was not until 1886 that vertically modulated engraved recordings using wax coated cylinders was patented by Chichester Bell and Charles Sumner Tainter. They named their version the Graphophone. Emile Berliner patented his Gramophone in 1887. The Gramophone involved a system of recording using a lateral (back and forth) movement of the stylus as it traced a spiral onto a zinc disc coated with a compound of beeswax in a solution of benzine. The zinc disc was immersed in a bath of chromic acid; this etched the groove into the disc where the stylus had removed the coating, after which the recording could be played.

In May 1889, the first "phonograph parlor" opened in San Francisco. Customers would sit at a desk where they could speak through a tube, and order a selection for one nickel. Through a separate tube connected to a cylinder phonograph in the room below, the selection would then be played. By the mid-1890s, most American cities had at least one phonograph parlor. Another common type of phonograph parlor featured a machine that would start or would be windable when a coin would be inserted. This jukebox-like phonograph was invented by Louis T. Glass and William S. Arnold. Many early machines were of the Edison Class M or Class E type. The Class M had a battery that would break if it fell or was smashed with another object. This would cause dangerous battery acid to spill everywhere. The Class E sold for a lower price and ran on 120V DC.

By 1890, record manufacturers had begun using a rudimentary duplication process to mass-produce their product. While the live performers recorded the master phonograph, up to ten tubes led to blank cylinders in other phonographs. Until this development, each record had to be custom-made. Before long, a more advanced pantograph-based process made it possible to simultaneously produce 90-150 copies of each record. However, as demand for certain records grew, popular artists still needed to re-record and re-re-record their songs. Reportedly, the medium's first major African-American star George Washington Johnson was obliged to perform his “The Laughing Song” (or the separate "Laughing Coon" //cylinders.library.ucsb.edu/search.php?queryType=@attr%201=1016%20&query=lAUGHING%20COON&;num=1&start=1&sortBy=&sortOrder=id">[1]) literally thousands of times in a studio during his recording career. Sometimes he would sing "The Laughing Song" more than fifty times in a day, at twenty cents per rendition. (The average price of a single cylinder in the mid-1890s was about fifty cents.)

 
I am the Edison Phonograph
 
This 1906 recording enticed store customers with the wonders of the invention.

Problems listening to this file? See media help.

Account of inventing the phonograph

Phonograph cabinet built with Edison cement, 1912. The clockwork portion of the phonograph is concealed in the base beneath the statue; the amplifying horn is the shell in behind the human figure.

Edison presented his own account of inventing the phonograph. "I was experimenting," he said, "on an automatic method of recording telegraph messages on a disk of paper laid on a revolving platen, exactly the same as the disk talking-machine of to-day. The platen had a spiral groove on its surface, like the disk. Over this was placed a circular disk of paper; an electromagnet with the embossing point connected to an arm travelled over the disk; and any signals given through the magnets were embossed on the disk of paper. If this disc was removed from the machine and put on a similar machine provided with a contact point, the embossed record would cause the signals to be repeated into another wire. The ordinary speed of telegraphic signals is thirty-five to forty words a minute; but with this machine several hundred words were possible.

"From my experiments on the telephone I knew of how to work a pawl connected to the diaphragm; and this engaging a ratchet-wheel served to give continuous rotation to a pulley. This pulley was connected by a cord to a little paper toy representing a man sawing wood. Hence, if one shouted: ' Mary had a little lamb,' etc., the paper man would start sawing wood. I reached the conclusion that if I could record the movements of the diaphragm properly, I could cause such records to reproduce the original movements imparted to the diaphragm by the voice, and thus succeed in recording and reproducing the human voice.

"Instead of using a disk I designed a little machine using a cylinder provided with grooves around the surface. Over this was to be placed tinfoil, which easily received and recorded the movements of the diaphragm. A sketch was made, and the piece-work price, $18, was marked on the sketch. I was in the habit of marking the price I would pay on each sketch. If the workman lost, I would pay his regular wages; if he made more than the wages, he kept it. The workman who got the sketch was John Kruesi. I didn't have much faith that it would work, expecting that I might possibly hear a word or so that would give hope of a future for the idea. Kruesi, when he had nearly finished it, asked what it was for. I told him I was going to record talking, and then have the machine talk back. He thought it absurd. However, it was finished, the foil was put on; I then shouted 'Mary had a little lamb', etc. I adjusted the reproducer, and the machine reproduced it perfectly. I was never so taken aback in my life. Everybody was astonished. I was always afraid of things that worked the first time. Long experience proved that there were great drawbacks found generally before they could be got commercial; but here was something there was no doubt of."

Oldest surviving recordings

Frank Lambert's lead cylinder recording for an experimental talking clock is often identified as the oldest surviving playable sound recording,[7] although the evidence advanced for its early date is controversial.[8] The phonograph cylinder recordings of Handel's choral music made on June 29, 1888 at The Crystal Palace in London were thought to be the oldest known surviving musical recordings,[9] until the recent playback by a group of American historians of a waveform of "Au Clair de la Lune", recorded on a phonautograph on April 9, 1860.[10] The 1860 phonautogram had not until then been played, as it was only an attempt to transcribe audio waves onto paper.

Disc versus cylinder as a recording medium

Disc recording is inherently neither better nor worse than cylinder recording in potential audio fidelity.

Recordings made on a cylinder remain at a constant linear velocity for the entirety of the recording, while those made on a disc have a higher linear velocity at the outer portion of the groove compared to the inner portion.

Edison's patented recording method recorded with vertical modulations in a groove. Berliner utilized a laterally modulated groove.

A Victor V phonograph ca. 1907

Though Edison's recording technology was better than Berliner's, there were commercial advantages to a disc system since the disc could be easily mass produced by molding and stamping and it required less storage space for a collection of recordings.

Berliner successfully argued that his technology was different enough from Edison's that he did not need to pay royalties on it, which reduced his business expenses.

Through experimentation, in 1892 Berliner began commercial production of his disc records, and "gramophones" or "talking-machines". His "gramophone record" was the first disc record to be offered to the public. They were five inches (12.7 cm) in diameter and recorded on one side only. Seven-inch (17.5 cm) records followed in 1895. Berliner's early records had poor sound quality, however. Work by Eldridge R. Johnson improved the sound fidelity to a point where it was as good as the cylinder.[11] By 1901, ten-inch (25 cm) records were marketed by Johnson and Berliner's Victor Talking Machine Company, and Berliner had sold his interests. By 1908, a majority of the public demanded double-sided disc recordings, and cylinders fell into disfavor. Edison felt the commercial pressure for disc records, and by 1912, though reluctant at first, his movement to disc records was in full swing. This was the Edison Disc Record.

From the mid-1890s until the early 1920s both phonograph cylinder and disc recordings and machines to play them on were widely mass-marketed and sold. The disc system gradually became more popular because of its cheaper price and better marketing by disc record companies. Edison ceased cylinder manufacture in the autumn of 1929, and the history of disc and cylinder rivalry was concluded.

Dominance of the gramophone record

An early 1930s portable wind-up phonograph from His Master's Voice.

Berliner's lateral disc record was the ancestor of the 78 rpm, 45 rpm, 33⅓ rpm, and all other analogue disc records popular for use in sound recording through the 20th century. See gramophone record.

The 1920s brought improved radio technology and radio sales, bringing many phonograph dealers to near financial ruin. With efforts at improved audio fidelity, the big record companies succeeded in keeping business booming through the end of the decade, but the record sales plummeted during the Great Depression, with many companies merging or going out of business.

In 1940, vinyl was used as a record material. Victor apparently pressed some vinyl 78s.

Booms in record sales returned after World War II as standards changed from 78s to vinyl long play records, which could contain an entire symphony, and 45s which usually contained one hit popularized on the radio, plus another song on the back or "flip" side. An "extended play" version of the 45 was also available, designated 45 EP, which provided capacity for longer selections, or two regular-length songs per side.

By the 1960s, cheaper portable record players and record changers which played stacks of records in wooden console cabinets were popular, usually with heavy and crude tonearms. Even pharmacies stocked 45 rpm records at their front counters. Rock music played on 45s became the soundtrack to the 1960s as people bought the same songs that were played free of charge on the radio. Some record players were even tried in automobiles, but were quickly displaced by 8-track and cassette tapes.

High fidelity made great advances during the 1970s, as turntables became very precise instruments with belt or direct drive, jewel-balanced tonearms, some with electronically controlled linear tracking and magnetic cartridges. Some cartridges had frequency response above 30 kHz for use with CD-4 quadraphonic 4 channel sound. A high fidelity component system which cost under $1000 could do a very good job of reproducing very accurate frequency response across the human audible spectrum from 20 Hz to 20,000 Hz with a $200 turntable which would typically have less than 0.05% wow and flutter and very low rumble (low frequency noise). A well-maintained record would have very little surface noise, though it was difficult to keep records completely free from scratches, which produced popping noises. Another characteristic failure mode was groove lock, causing a section of music to repeat, separated by a popping noise. This was so common that a saying was coined: you sound like a broken record, referring to someone who is being annoyingly repetitious.

A novelty variation on the standard format was the use of multiple concentric spirals with different recordings. Thus when the record was played multiple times, different recordings would play seemingly at random.

Records themselves became an art form because of the large surface onto which graphics and books could be printed, and records could be molded into unusual shapes, colors, or with images (picture discs). The turntable remained a common element of home audio systems well after the introduction of other media such as audio tape and even the early years of the compact disc as a lower priced music format. However, even as the cost of producing CDs fell below that of records, CDs would remain a higher priced music format than cassettes or records. Thus, records were not uncommon in home audio systems into the early 1990s.

By the turn of the 21st century, the turntable had become a niche product, as the price of CD players, which reproduce music free from pops and scratches, fell far lower than high fidelity tape players or turntables. Nevertheless, there is some increase in interest as many big-box media stores stock turntables, as do professional DJ equipment stores. On the other hand, all but the most expensive stereo receivers now omit the phono input. The list price of first-run CDs remains above $15, while used records are very inexpensive, and some are rare and sought after. Some combination systems include basic turntables with a CD and radio in retro-styled cabinets. Records also continue to be manufactured and sold today, albeit in very small quantities when compared to the disc phonograph's heyday.

Thomas Edison

From Wikipedia, the free encyclopedia

Jump to: navigation, search

Thomas Alva Edison

"Genius is one percent inspiration, ninety-nine percent perspiration."
– Thomas Alva Edison, Harper's Monthly (September 1932)

Born February 11, 1847(1847-02-11)
Milan, Ohio
Died October 18, 1931 (aged 84)
West Orange, New Jersey
Occupation inventor, scientist, businessman
Religion Deist
Spouse(s) Mary Stilwell (m. 1871–1884) «start: (1871)–end+1: (1885)»"Marriage: Mary Stilwell to Thomas Edison" Location: (linkback:http://en.wikipedia.org/wiki/Thomas_Edison)
Mina Edison (m. 1886–1931) «start: (1886)–end+1: (1932)»"Marriage: Mina Edison to Thomas Edison" Location: (linkback:http://en.wikipedia.org/wiki/Thomas_Edison)
Children Marion Estelle Edison (1873–1965)
Thomas Alva Edison Jr. (1876–1935)
William Leslie Edison (1878–1937)
Madeleine Edison (1888–1979)
Charles Edison (1890–1969)
Theodore Miller Edison (1898–1992)
Parents Samuel Ogden Edison, Jr. (1804–1896)
Nancy Matthews Elliott (1810–1871)
Relatives Lewis Miller (father-in-law)

Signature

Birthplace of Thomas Edison

Historical marker of Edison's birthplace in Milan, Ohio

Thomas Alva Edison (February 11, 1847 – October 18, 1931) was an American inventor, scientist and businessman who developed many devices that greatly influenced life around the world, including the phonograph, the motion picture camera, and a long-lasting, practical electric light bulb. Dubbed "The Wizard of Menlo Park" (now Edison, New Jersey) by a newspaper reporter, he was one of the first inventors to apply the principles of mass production and large teamwork to the process of invention, and therefore is often credited with the creation of the first industrial research laboratory.

Edison is considered one of the most prolific inventors in history, holding 1,093 U.S. patents in his name, as well as many patents in the United Kingdom, France, and Germany. He is credited with numerous inventions that contributed to mass communication and, in particular, telecommunications. His advanced work in these fields was an outgrowth of his early career as a telegraph operator. Edison originated the concept and implementation of electric-power generation and distribution to homes, businesses, and factories – a crucial development in the modern industrialized world. His first power station was on Manhattan Island, New York.

Thomas Edison as a boy

Thomas Edison was born in Milan, Ohio, and grew up in Port Huron, Michigan. He was the seventh and last child of Samuel Ogden Edison, Jr. (1804–1896, born in Marshalltown, Nova Scotia, Canada) and Nancy Matthews Elliott (1810–1871). He considered himself to be of Dutch ancestry.[1] In school, the young Edison's mind often wandered, and his teacher, the Reverend Engle, was overheard calling him "addled". This ended Edison's three months of official schooling. Edison recalled later, "My mother was the making of me. She was so true, so sure of me; and I felt I had something to live for, someone I must not disappoint." His mother homeschooled him.[2] Much of his education came from reading R.G. Parker's School of Natural Philosophy and The Cooper Union. Edison developed hearing problems at an early age. The cause of his deafness has been attributed to a bout of scarlet fever during childhood and recurring untreated middle ear infections. Around the middle of his career Edison attributed the hearing impairment to being struck on the ears by a train conductor when his chemical laboratory in a boxcar caught fire and he was thrown off the train in Smiths Creek, Michigan, along with his apparatus and chemicals. In his later years he modified the story to say the injury occurred when the conductor, in helping him onto a moving train, lifted him by the ears.[3][4] Edison's family was forced to move to Port Huron, Michigan, when the railroad bypassed Milan in 1854,[5] but his life there was bittersweet. He sold candy and newspapers on trains running from Port Huron to Detroit, and he sold vegetables to supplement his income. This began Edison's long streak of entrepreneurial ventures as he discovered his talents as a businessman. These talents eventually led him to found 14 companies, including General Electric, which is still in existence and is the largest publicly traded company in the world.[6][7]

Telegrapher

Edison became a telegraph operator after he saved three-year-old Jimmie MacKenzie from being struck by a runaway train. Jimmie's father, station agent J.U. MacKenzie of Mount Clemens, Michigan, was so grateful that he trained Edison as a telegraph operator. Edison's first telegraphy job away from Port Huron was at Stratford Junction, Ontario, on the Grand Trunk Railway.[8] In 1866, at the age of 19, Thomas Edison moved to Louisville, Kentucky, where, as an employee of Western Union, he worked the Associated Press bureau news wire. Edison requested the night shift, which allowed him plenty of time to spend at his two favorite pastimes—reading and experimenting. Eventually, the latter pre-occupation cost him his job. One night in 1867, he was working with a lead-acid battery when he spilled sulfuric acid onto the floor. It ran between the floorboards and onto his boss's desk below. The next morning Edison was fired.[9]

One of his mentors during those early years was a fellow telegrapher and inventor named Franklin Leonard Pope, who allowed the impoverished youth to live and work in the basement of his Elizabeth, New Jersey home. Some of Edison's earliest inventions were related to telegraphy, including a stock ticker. His first patent was for the electric vote recorder, (U. S. Patent 90,646),[10] which was granted on June 1, 1869.[11]

Marriages and children

Mina Edison in 1906

On December 25, 1871, Edison married 16-year-old Mary Stilwell, whom he had met two months earlier as she was an employee at one of his shops. They had three children:

  • Marion Estelle Edison (1873–1965), nicknamed "Dot"[12]
  • Thomas Alva Edison, Jr. (1876–1935), nicknamed "Dash"[13]
  • William Leslie Edison (1878–1937) Inventor, graduate of the Sheffield Scientific School at Yale, 1900.[14]

Mary Edison died on August 9, 1884, possibly from a brain tumor.[15]

On February 24, 1886, at the age of thirty nine, Edison married 20-year-old Mina Miller in Akron, Ohio.[16] She was the daughter of inventor Lewis Miller, co-founder of the Chautauqua Institution and a benefactor of Methodist charities. They also had three children:

Mina outlived Thomas Edison, dying on August 24, 1947.[20][21]

Beginning his career

Photograph of Edison with his phonograph, taken by Mathew Brady in 1877

 
Mary Had a Little Lamb
 
Thomas Edison reciting "Mary Had a Little Lamb"

Problems listening to this file? See media help.

Thomas Edison began his career as an inventor in Newark, New Jersey, with the automatic repeater and his other improved telegraphic devices, but the invention which first gained him fame was the phonograph in 1877. This accomplishment was so unexpected by the public at large as to appear almost magical. Edison became known as "The Wizard of Menlo Park," New Jersey, where he lived. His first phonograph recorded on tinfoil around a grooved cylinder and had poor sound quality. The tinfoil recordings could be replayed only a few times. In the 1880s, a redesigned model using wax-coated cardboard cylinders was produced by Alexander Graham Bell, Chichester Bell, and Charles Tainter. This was one reason that Thomas Edison continued work on his own "Perfected Phonograph."

Menlo Park (1876–1881)

Edison's major innovation was the first industrial research lab, which was built in Menlo Park, New Jersey. It was built with the funds from the sale of Edison's quadruplex telegraph. After his demonstration of the telegraph, Edison was not sure that his original plan to sell it for $4,000 to $5,000 was right, so he asked Western Union to make a bid. He was surprised to hear them offer $10,000 which he gratefully accepted. The quadruplex telegraph was Edison's first big financial success, and Menlo Park became the first institution set up with the specific purpose of producing constant technological innovation and improvement. Edison was legally attributed with most of the inventions produced there, though many employees carried out research and development work under his direction. His staff was generally told to carry out his directions in conducting research, and he drove them hard to produce results. The large research group included engineers and other workers.

Edison's Menlo Park Laboratory, removed to Greenfield Village in Dearborn, Michigan. (Note the organ against the back wall)

William J. Hammer, a consulting electrical engineer, began his duties as a laboratory assistant to Edison in December 1879. He assisted in experiments on the telephone, phonograph, electric railway, iron ore separator, electric lighting, and other developing inventions. However, Hammer worked primarily on the incandescent electric lamp and was put in charge of tests and records on that device. In 1880, he was appointed chief engineer of the Edison Lamp Works. In his first year, the plant under General Manager Francis Robbins Upton turned out 50,000 lamps. According to Edison, Hammer was "a pioneer of incandescent electric lighting".

Thomas Edison's first successful light bulb model, used in public demonstration at Menlo Park, December 1879

Nearly all of Edison's patents were utility patents, which were protected for a 17-year period and included inventions or processes that are electrical, mechanical, or chemical in nature. About a dozen were design patents, which protect an ornamental design for up to a 14-year period. As in most patents, the inventions he described were improvements over prior art. The phonograph patent, in contrast, was unprecedented as describing the first device to record and reproduce sounds.[22] Edison did not invent the first electric light bulb, but instead invented the first commercially practical incandescent light. Several designs had already been developed by earlier inventors including the patent he allegedly purchased from Henry Woodward and Mathew Evans. Others who developed early and not commercially practical incandescent electric lamps included Humphry Davy, James Bowman Lindsay, Moses G. Farmer,[23] William E. Sawyer, Joseph Swan and Heinrich Göbel. Some of these early bulbs had such flaws as an extremely short life, high expense to produce, and high electric current drawn, making them difficult to apply on a large scale commercially. In 1878, Edison applied the term filament to the element of glowing wire carrying the current, although the English inventor Joseph Swan had used the term prior to this. Swan developed an incandescent light with a long lasting filament at about the same time as Edison, but it lacked the high resistance needed for central station DC service. Edison took the features of these earlier designs and set his workers to the task of creating longer-lasting bulbs. By 1879, he had produced a new concept: a high resistance lamp in a very high vacuum, which would burn for hundreds of hours. While the earlier inventors had produced electric lighting in laboratory conditions, dating back to a demonstration of a glowing wire by Alessandro Volta in 1800, Edison concentrated on commercial application, and was able to sell the concept to homes and businesses by mass-producing relatively long-lasting light bulbs and creating a complete system for the generation and distribution of electricity.

In just over a decade Edison's Menlo Park laboratory had expanded to occupy two city blocks. Edison said he wanted the lab to have "a stock of almost every conceivable material". A newspaper article printed in 1887 reveals the seriousness of his claim, stating the lab contained "eight thousand kinds of chemicals, every kind of screw made, every size of needle, every kind of cord or wire, hair of humans, horses, hogs, cows, rabbits, goats, minx, camels ... silk in every texture, cocoons, various kinds of hoofs, shark's teeth, deer horns, tortoise shell ... cork, resin, varnish and oil, ostrich feathers, a peacock's tail, jet, amber, rubber, all ores ..." and the list goes on.[24]

Over his desk, Edison displayed a placard with Sir Joshua Reynolds' famous quote: "There is no expedient to which a man will not resort to avoid the real labor of thinking."[25] This slogan was reputedly posted at several other locations throughout the facility.

With Menlo Park, Edison had created the first industrial laboratory concerned with creating knowledge and then controlling its application.

Carbon telephone transmitter

In 1877–1878, Edison invented and developed the carbon microphone used in all telephones along with the Bell receiver until the 1980s. After protracted patent litigation, in 1892 a federal court ruled that Edison—and not Emile Berliner—was the inventor of the carbon microphone. The carbon microphone was also used in radio broadcasting and public address work through the 1920s.

Electric light

Edison in 1878

Video clip of Thomas Edison talking about the invention of the light bulb, late 1920s

Main article: Incandescent light bulb

After many experiments with platinum and other metal filaments, Edison returned to a carbon filament. The first successful test was on October 22, 1879;[26] it lasted 40 hours. Edison continued to improve this design and by November 4, 1879, filed for U.S. patent 223,898 (granted on January 27, 1880) for an electric lamp using "a carbon filament or strip coiled and connected to platina contact wires".[27] Although the patent described several ways of creating the carbon filament including "cotton and linen thread, wood splints, papers coiled in various ways",[27] it was not until several months after the patent was granted that Edison and his team discovered a carbonized bamboo filament that could last over 1,200 hours. The idea of using this particular raw material originated from Edison's recalling his examination of a few threads from a bamboo fishing pole while relaxing on the shore of Battle Lake in the present-day state of Wyoming, where he and other members of a scientific team had traveled so that they could clearly observe a total eclipse of the sun on July 29, 1878, from the Continental Divide.[28]

U.S. Patent#223898: Electric-Lamp. Issued January 27, 1880.

Edison allegedly bought light bulb U.S. patent 181,613 of Henry Woodward that was issued August 29, 1876, and obtained an exclusive license to Woodward's Canadian patent. These patents covered a carbon rod in a nitrogen filled glass cylinder, and differed substantially from the first commercially practical bulb invented by Edison.[citation needed]

In 1878, Edison formed the Edison Electric Light Company in New York City with several financiers, including J. P. Morgan and the members of the Vanderbilt family. Edison made the first public demonstration of his incandescent light bulb on December 31, 1879, in Menlo Park. It was during this time that he said: "We will make electricity so cheap that only the rich will burn candles."[29]

George Westinghouse's company bought Philip Diehl's competing induction lamp patent rights (1882) for $25,000, forcing the holders of the Edison patent to charge a more reasonable rate for the use of the Edison patent rights and lowering the price of the electric lamp.[30]

On October 8, 1883, the U.S. patent office ruled that Edison's patent was based on the work of William Sawyer and was therefore invalid. Litigation continued for nearly six years, until October 6, 1889, when a judge ruled that Edison's electric light improvement claim for "a filament of carbon of high resistance" was valid. To avoid a possible court battle with Joseph Swan, whose British patent had been awarded a year before Edison's, he and Swan formed a joint company called Ediswan to manufacture and market the invention in Britain.

Mahen Theatre in Brno in what is now the Czech Republic, was the first public building in the world to use Edison's electric lamps, with the installation supervised by Edison's assistant in the invention of the lamp, Francis Jehl.[31]

Electric power distribution

Edison patented a system for electricity distribution in 1880, which was essential to capitalize on the invention of the electric lamp. On December 17, 1880, Edison founded the Edison Illuminating Company. The company established the first investor-owned electric utility in 1882 on Pearl Street Station, New York City. It was on September 4, 1882, that Edison switched on his Pearl Street generating station's electrical power distribution system, which provided 110 volts direct current (DC) to 59 customers in lower Manhattan. [32]

Earlier in the year, in January 1882 he had switched on the first steam generating power station at Holborn Viaduct in London. The DC supply system provided electricity supplies to street lamps and several private dwellings within a short distance of the station. On January 19, 1883, the first standardized incandescent electric lighting system employing overhead wires began service in Roselle, New Jersey.

War of currents

Main article: War of Currents

Extravagant displays of electric lights quickly became a feature of public events, as in this picture from the 1897 Tennessee Centennial Exposition.

Edison's true success, like that of his friend Henry Ford, was in his ability to maximize profits through establishment of mass-production systems and intellectual property rights. George Westinghouse and Edison became adversaries because of Edison's promotion of direct current for electric power distribution instead of the more easily transmitted alternating current (AC) system invented by Nikola Tesla and promoted by Westinghouse. Unlike DC, AC could be stepped up to very high voltages with transformers, sent over thinner and cheaper wires, and stepped down again at the destination for distribution to users.

In 1887 there were 121 Edison power stations in the United States delivering DC electricity to customers. When the limitations of Direct Current (DC) were discussed by the public, Edison launched a propaganda campaign to convince people that alternating current (AC) was far too dangerous to use. The problem with DC was that the power plants could economically deliver DC electricity only to customers within about one and a half miles (about 2.4 km) from the generating station, so that it was suitable only for central business districts. When George Westinghouse suggested using high-voltage AC instead, as it could carry electricity hundreds of miles with marginal loss of power, Edison waged a "War of Currents" to prevent AC from being adopted.

Despite Edison's contempt for capital punishment, the war against AC led him to become involved in the development and promotion of the electric chair (using AC current) as an attempt to portray AC to have greater lethal potential than DC. Edison went on to carry out a brief but intense campaign to ban the use of AC or to limit the allowable voltage for safety purposes. As part of this campaign, Edison's employees publicly electrocuted animals to demonstrate the dangers of AC;[33][34] AC electric currents are slightly more dangerous in that frequencies near 60 Hz have a markedly greater potential for inducing fatal "Cardiac Fibrillation" than do DC currents.[35] On one of the more notable occasions, in 1903, Edison's workers electrocuted Topsy the elephant at Luna Park, near Coney Island, after she had killed several men and her owners wanted her put to death.[36] His company filmed the electrocution.

AC replaced DC in most instances of generation and power distribution, enormously extending the range and improving the efficiency of power distribution. Though widespread use of DC ultimately lost favor for distribution, it exists today primarily in long-distance high-voltage direct current (HVDC) transmission systems. Low voltage DC distribution continued to be used in high density downtown areas for many years but was eventually replaced by AC low-voltage network distribution in many of them. DC had the advantage that large battery banks could maintain continuous power through brief interruptions of the electric supply from generators and the transmission system. Utilities such as Commonwealth Edison in Chicago had rotary converters or motor-generator sets, which could change DC to AC and AC to various frequencies in the early to mid-20th century. Utilities supplied rectifiers to convert the low voltage AC to DC for such DC loads as elevators, fans and pumps. There were still 1,600 DC customers in downtown New York City as of 2005, and service was finally discontinued only on November 14, 2007.[37] Most subway systems still are powered by direct current.

Fluoroscopy

Edison is credited with designing and producing the first commercially available fluoroscope, a machine that uses X-rays to take radiographs. Until Edison discovered that calcium tungstate fluoroscopy screens produced brighter images than the barium platinocyanide screens originally used by Wilhelm Röntgen, the technology was capable of producing only very faint images. The fundamental design of Edison's fluoroscope is still in use today, despite the fact that Edison himself abandoned the project after nearly losing his own eyesight and seriously injuring his assistant, Clarence Dally. Dally had made himself an enthusiastic human guinea pig for the fluoroscopy project and in the process been exposed to a poisonous dose of radiation. He later died of injuries related to the exposure. In 1903, a shaken Edison said "Don't talk to me about X-rays, I am afraid of them."[38]

Work relations

Frank J. Sprague, a competent mathematician and former naval officer, was recruited by Edward H. Johnson and joined the Edison organization in 1883. One of Sprague's significant contributions to the Edison Laboratory at Menlo Park was to expand Edison's mathematical methods. Despite the common belief that Edison did not use mathematics, analysis of his notebooks reveal that he was an astute user of mathematical analysis conducted by his assistants such as Francis Upton, for example, determining the critical parameters of his electric lighting system including lamp resistance by a sophisticated analysis of Ohm's Law, Joule's Law and economics.[39]

Another of Edison's assistants was Nikola Tesla, to whom Edison promised $50,000 if he succeeded in making improvements to his DC generation plants. Several months later, when Tesla had finished the work and asked to be paid, Edison said, "When you become a full-fledged American you will appreciate an American joke."[40] Tesla immediately resigned. With Tesla's salary of $18 per week, the payment would have amounted to over 53 years' pay and the amount was equal to the initial capital of the company. Tesla resigned when he was refused a raise to $25 per week.[41] Although Tesla accepted an Edison Medal later in life, this and other negative series of events concerning Edison remained with Tesla. The day after Edison died, the New York Times contained extensive coverage of Edison's life, with the only negative opinion coming from Tesla who was quoted as saying, "He had no hobby, cared for no sort of amusement of any kind and lived in utter disregard of the most elementary rules of hygiene" and that, "His method was inefficient in the extreme, for an immense ground had to be covered to get anything at all unless blind chance intervened and, at first, I was almost a sorry witness of his doings, knowing that just a little theory and calculation would have saved him 90% of the labour. But he had a veritable contempt for book learning and mathematical knowledge, trusting himself entirely to his inventor's instinct and practical American sense." It seems very likely that Tesla's description was accurate, considering one of Edison's famous quotes regarding his attempts to make the light globe: "If I find 10,000 ways something won't work, I haven't failed. I am not discouraged, because every wrong attempt discarded is another step forward".[42] When Edison was a very old man and close to death, he said, in looking back, that the biggest mistake he had made was that he never respected Tesla or his work.[43]

There were 28 men recognized as Edison Pioneers.

Media inventions

The key to Edison's fortunes was telegraphy. With knowledge gained from years of working as a telegraph operator, he learned the basics of electricity. This allowed him to make his early fortune with the stock ticker, the first electricity-based broadcast system. Edison patented the sound recording and reproducing phonograph in 1878. Edison was also granted a patent for the motion picture camera or "Kinetograph". He did the electromechanical design, while his employee W.K.L. Dickson, a photographer, worked on the photographic and optical development. Much of the credit for the invention belongs to Dickson.[26] In 1891, Thomas Edison built a Kinetoscope, or peep-hole viewer. This device was installed in penny arcades, where people could watch short, simple films. The kinetograph and kinetoscope were both first publicly exhibited May 20, 1891.[44]

On August 9, 1892, Edison received a patent for a two-way telegraph. In April 1896, Thomas Armat's Vitascope, manufactured by the Edison factory and marketed in Edison's name, was used to project motion pictures in public screenings in New York City. Later he exhibited motion pictures with voice soundtrack on cylinder recordings, mechanically synchronized with the film.

The June 1894 Leonard–Cushing bout. Each of the six one-minute rounds recorded by the Kinetoscope was made available to exhibitors for $22.50.[45] Customers who watched the final round saw Leonard score a knockdown.

Officially the kinetoscope entered Europe when the rich American Businessman Irving T. Bush (1869–1948) bought from the Continental Commerce Company of Franck Z. Maguire and Joseph D. Bachus a dozen machines. Bush placed from October 17, 1894, the first kinetoscopes in London. At the same time the French company Kinétoscope Edison Michel et Alexis Werner bought these machines for the market in France. In the last three months of 1894 The Continental Commerce Company sold hundreds of kinetoscopes in Europe (i.e. the Netherlands and Italy). In Germany and in Austria-Hungary the kinetoscope was introduced by the Deutsche-österreichische-Edison-Kinetoscop Gesellschaft, founded by the Ludwig Stollwerck[46] of the Schokoladen-Süsswarenfabrik Stollwerck & Co of Cologne. The first kinetoscopes arrived in Belgium at the Fairs in early 1895. The Edison's Kinétoscope Français, a Belgian company, was founded in Brussels on January 15, 1895, with the rights to sell the kinetoscopes in Monaco, France and the French colonies. The main investors in this company were Belgian industrialists. On May 14, 1895, the Edison's Kinétoscope Belge was founded in Brussels. The businessman Ladislas-Victor Lewitzki, living in London but active in Belgium and France, took the initiative in starting this business. He had contacts with Leon Gaumont and the American Mutoscope and Biograph Co. In 1898 he also became a shareholder of the Biograph and Mutoscope Company for France.[47]

In 1901, he visited the Sudbury area in Ontario, Canada, as a mining prospector, and is credited with the original discovery of the Falconbridge ore body. His attempts to actually mine the ore body were not successful, however, and he abandoned his mining claim in 1903.[48] A street in Falconbridge, as well as the Edison Building, which served as the head office of Falconbridge Mines, are named for him.

In 1902, agents of Thomas Edison bribed a theater owner in London for a copy of A Trip to the Moon by Georges Méliès. Edison then made hundreds of copies and showed them in New York City. Méliès received no compensation. He was counting on taking the film to the US and recapture its huge cost by showing it throughout the country when he realized it had already been shown there by Edison. This effectively bankrupted Méliès.[49] Other exhibitors similarly routinely copied and exhibited each others films.[50] To better protect the copyrights on his films, Edison deposited prints of them on long strips of photographic paper with the U.S. copyright office. Many of these paper prints survived longer and in better condition than the actual films of that era.[51]

Edison's favourite movie was The Birth of a Nation. He thought that talkies had "spoiled everything" for him. "There isn't any good acting on the screen. They concentrate on the voice now and have forgotten how to act. I can sense it more than you because I am deaf."[52]

In 1908, Edison started the Motion Picture Patents Company, which was a conglomerate of nine major film studios (commonly known as the Edison Trust). Thomas Edison was the first honorary fellow of the Acoustical Society of America, which was founded in 1929.

Thomas Alva Edison (February 11, 1847 – October 18, 1931) was an American inventor, scientist and businessman who developed many devices that greatly influenced life around the world, including the phonograph, the motion picture camera, and a long-lasting, practical electric light bulb. Dubbed "The Wizard of Menlo Park" (now Edison, New Jersey) by a newspaper reporter, he was one of the first inventors to apply the principles of mass production and large teamwork to the process of invention, and therefore is often credited with the creation of the first industrial research laboratory.

    

     Jesse Walter Fewkes (1850–1930) was an American anthropologist, archaeologist, writer and naturalist. He was born in Newton, Massachusetts, and initially trained as a zoologist at Harvard University. He later turned to ethnological studies of the native tribes in the American Southwest.

In 1889, with the resignation of noted ethnologist Frank Hamilton Cushing, Fewkes became leader of the Hemenway Southwestern Archaeological Expedition. While with this project, Fewkes documented the existing lifestyle and rituals of the Zuni and Hopi tribes. He made the first phonograph recordings of Zuni songs. Fewkes joined the Smithsonian's Bureau of American Ethnology in 1895, becoming its director in 1918.

In Hungary Bela Vikar (1859-1945) was the first who used the phonograph collecting folk songs. (1892)

(In 1896 Zoltan Kodaly as a 14 years old boy listened this cylinders  at Hungarian Millenium Exhibition (Budapest). It was his first meeting folk songs.)

We Hungarians have cca 6000 cylinders (folk songs), 4500 of them is at Museum of Ethnography (Bp.), 500 at Kodaly Archives. (The others at collectors.)

Friss hírek

KÓTA díj

KÓTA díjat kapott Fehér Anikó karnagyi kategóriában 2019. február 20-án.

Read more ...

Kis Kidéből nékem el kell menni...

Megjelent Fehér Anikó új kötete:
"Kis Kidéből nékem el kell menni..." Járdányi Pál, a népzenekutató

Read more ...

Búcsúzunk Kallós Zoli Bácsitól

 

koll10